
Hybrid Solvers for Quadratic Optimization

WHITEPAPER

Summary

We present an overview introduction to D-Wave’s hybrid
solver service (HSS). HSS contains three solvers — BQM,
DQM, and CQM — that can be applied to quadratic opti-
mization problems de�ned on discrete or continuous vari-
ables. The most general CQM solver provides support for
problems de�ned on binaries, integers, and reals, as well as
a convenient notation for expressing linear and quadratic
constraints. All solvers in the HSS are designed to inte-
grate classical and quantum solution methods, exploiting
the power of both computing paradigms.

1 Introduction
D-Wave’s hybrid solver service (HSS) contains a portfo-
lio of heuristic solvers that leverage both quantum and
classical solution approaches to read and solve opti-
mization problems much larger than can fit on Advan-
tage™ quantum processors. Furthermore, HSS solvers
provide interface support for applications well outside
the native problem formulation, which is quadratic, un-
constrained and binary. This interface reduces — and
sometimes completely eliminates — the need for users
to translate their application problems into a formula-
tion that matches the quantum hardware.

Figure 1 illustrates the result of D-Wave’s continuing ef-
forts to expand the variety of problems that fall within
scope of the HSS portfolio. The BQM and DQM solvers
read unconstrained quadratic problems defined on bi-

BQM
binary

DQM
discrete

CQM
constrained
binary
integer
real

Figure 1: Expanding scope of problems and variable types
supported by HSS solvers.

nary variables (taking two values), and on discrete
variables (taking multiple values), respectively. In May
2022, CQM solver support was extended to continuous
models: it now can read constrained problems defined
on binary, integer, and real variables.

To our knowledge, this is the world’s first and only
hybrid solver capable of leveraging quantum compu-
tation to address both discrete and continuous prob-
lems.1

1Some notational conflict is unavoidable in standard usage:
binary, discrete, and integer variables in computer science are ex-
amples of discrete number domains in mathematics, and real vari-
ables belongs to the continuous number domain.

14-1062A D-Wave Whitepaper Series 2022-04-29



This white paper presents an overview of solvers in the
HSS portfolio, as follows.

• Section 2 surveys the varieties of problem types
that can be addressed by solvers in the HSS.

• Section 3 presents a small performance compar-
ison illustrating how problem features can be
matched to solver types.

• All solvers in the HSS implement a classical front
end that works in tandem with a quantum back
end. Section 4 describes this arrangement and
shows how the hybrid workflow can demonstrate
quantum acceleration of a classical computation.

The hybrid solver service is cloud-based and offered
by subscription via the Leap™ web portal; see [1,2] to
learn more about Leap and the hybrid solver service.

For developers who prefer to implement their own ap-
proaches to combining quantum and classical compu-
tation, D-Wave offers dwave-hybrid, an open-source
Python framework with support for building hybrid
workflows that interface with D-Wave’s quantum an-
nealing processors; visit [3] to learn more.

2 Quadratic Models for
Real-World Problems

This section illustrates the differences in types of prob-
lem formulations — called models — that are sup-
ported by the three solvers in HSS.

We start with the binary quadratic model (BQM), which
matches the native formulation used by Advantage
quantum processing units (QPUs). In principle, any
NP-hard problem can be efficiently translated to a BQM
and solved directly in quantum hardware. However,
most BQMs of real-world interest are simply too large
to fit on current-sized Advantage quantum processing
units (QPUs). The BQM hybrid solver in HSS removes
this obstacle by providing an interface that can read
general BQMs containing up to one million variables
(see Table 1).

Researchers have built up a large “cookbook” of prob-
lem translations to DQMs: see [4] to learn about
the hundreds of different applications that have been

demonstrated to run on D-Wave systems. How-
ever, new application problems continually arise, and
new and better translation strategies are continually
needed.

The DQM and CQM solvers are part of an outreach ef-
fort by D-Wave developers to expand the scope of mod-
els that can be solved directly in HSS, without needing
additional translation to BQMs. These solvers can be
more convenient to use and, in some cases, can deliver
better hybrid performance than the BQM solver.

Binary Quadratic Models Graph G in Figure 2 (a)
shows a simple BQM problem known as MAXCUT.
The nodes of G are variables and the edges represent
interactions between pairs of variables. A solution to
the problem corresponds to an assignment of values (in
this case colors) to the nodes of G. This is a binary prob-
lem because only two values 0 (teal) or 1 (orange) can
be assigned to the nodes.

The edges of G are assigned numbers, called biases, that
express preferences for certain value combinations on
endpoint nodes. In this example, a solid edge has neg-
ative bias, expressing preference for same values (0,0)
or (1,1), and a dotted edge has positive bias, express-
ing preference for different values (1,0) or (0,1). Assume
that the length of an edge indicates the magnitude of
the bias and the strength of the preference. (BQMs also
support assignment of biases to nodes, but MAXCUT
does not use this feature.)

Each possible solution has a quality score S, computed
according to how well the assignment satisfies the pref-
erences expressed by biases. This is a quadratic problem
because calculation of S incorporates edge and node bi-
ases, whereas a linear problem only considers node bi-
ases. The MAXCUT problem is, given a graph G and its
biases, to find an assignment of binary values to nodes
that maximizes S.

Variations on this abstract problem arise in many real-
world application areas, such as:

• VLSI circuit design. Nodes represent circuit com-
ponents and edge biases represent preferences that
components be located on “same” or “different”
design layers. An optimal MAXCUT solution as-
signs components to two layers (0 or 1) in a way
that minimizes the cost of wires needed to connect
components within and between the layers.

Copyright © D-Wave Systems Inc. Hybrid Quadratic Solvers 2



(a) BQM (b) DQM (c) CQM

Figure 2: (a) A solution to a BQM problem with binary variables taking two values (teal and orange). (b) A solution to a DQM
problem with discrete variables taking four values (orange, teal, purple, blue). (c) A solution to a CQM problem with constraints,
defined on integer variables assigned to gradations of colors.

• Portfolio allocation. Nodes represent financial as-
sets available for purchase. Node biases represent
expected returns, and edge biases represent price
correlations (positive or negative) between asset
pairs. A robust portfolio minimizes risk by using
diversification to maximize negative correlations
within a group of selected assets. An optimal so-
lution to this problem divides the assets into two
groups (“select” and “omit’), to maximize return
and minimize risk in the selected set.

• Social network analysis. Nodes represent people,
and edge biases represent friendly and hostile en-
counters between them. An optimal solution to
the “community detection” problem assigns peo-
ple to two groups to maximizes a score measur-
ing friendly relationships within groups, and hos-
tile relationships between members of different
groups.

To elaborate on the third example, suppose the edge
biases represent friendly (solid) and hostile (dotted)
encounters among citizens of twelfth-century Verona.
The computational problem is to assign citizens to the
groups Montague (0, teal) and Capulet (1, orange), to
maximize the MAXCUT score S. Figure 2 (a) shows one
possible solution.

Researchers in social network analysis study the num-

ber of “frustrated” edges in an optimal solution — that
is, hostile encounters within a group or friendly en-
counters between members of different groups. For ex-
ample, Juliet is friendly with both Romeo and her fa-
ther, but Romeo and Lord Capulet have a hostile re-
lationship: any assignment must frustrate at least one
edge of this triangle. In another example, Mercutio has
a hostile relationship with both groups,2 so some edges
must be frustrated no matter which group he is in. A
high number of frustrated edges in an optimal solution
is a sign of structural imbalance, which is associated with
increased potential for clashes, violence, and perhaps
even tragedy.

Discrete and Integer Models Suppose now that Fig-
ures 2(b) and 2(c) represent solutions to a network anal-
ysis problem involving four social groups in Verona
and Florence: Capulet=orange=1, Montague=teal=2,
Medici=purple=3, and Albizzi=blue=4. DQMs and
CQMs may be defined directly on discrete and inte-
ger variables which allows the user to circumvent both
problems. In this context, discrete refers to categori-
cal values such as colors or surnames, whereas integer
refers to numerical values.

Although it is technically possible to formulate this
problem as a BQM, techniques for doing so would in-

2“A plague o’ both your houses!”

Copyright © D-Wave Systems Inc. Hybrid Quadratic Solvers 3



volve replacing each node in the original graph with
four binary nodes (one for each possible value assign-
ment), creating a four-fold increase in problem size.
It would also require rewriting the objective function
to ensure that at exactly one of each binary combina-
tion (node, value) is selected. Using the DQM or CQM
solvers allows the user to circumvent the problem of
expanding input size and the inconvenience of prob-
lem reformulation.

Models with Constraints In this example problem the
notational differences between DQM and CQM formu-
lations are small: in DQM the four values are called
cases, and the input would contain lists of valid cases
that can be assigned to each node; in CQM the input
would specify valid ranges of integers [0 . . . 3] for each
node.

The primary difference between the CQM solver and its
companions in HSS is that CQM offers a rich language
for expressing constraints — that is, rules about what
constitutes a feasible (i.e., valid) solution to the prob-
lem. In constrast, all solutions to (unconstrained) BQMs
and DQMs are considered feasible. As before, while it
is technically possible to incorporate constraints in ob-
jective functions for BQM and DQM formulations, the
constraint language of CQM is much more convenient
to use. In addition, the direct approach gives the CQM
solver a performance edge by allowing it to recognize
and avoid infeasible regions of the solution space. Fur-
thermore, representation of more realistic models can
greatly improve the practical value of solutions found
by the CQM solver.

To illustrate this point, suppose that Figure 2 (c) de-
scribes city features including a river (blue line), a
duomo (large green square), and two palazzi (square
nodes). With integer variable it becomes possible to ex-
press constraints involving (linear) sums of node and
edge weights, (quadratic) sums of products of nodes
and edge weights, and sums of node values. Rules such
as the following can be expressed using this interface:

1. The two palazzi must be assigned to two different
families.

2. The five nodes surrounding the duomo cannot all
be from the same family.

3. Every family must be assigned to at least 8 and no
more than 12 nodes.

4. No more than half the edges across the river can
have endpoints assigned to different families.

Problems with Integer and Real Variables As of April
2022, the CQM solver supports representation of contin-
uous models defined on real-valued variables as well as
integers and binaries. Models containing real variables
are typically found when the values to be assigned to
nodes represent locations in space or time. Since the
MAXCUT/social networking problem is not of this cat-
egory, we switch to a new problem known as Job Shop
Scheduling (JSS), shown in Figure 3 to illustrate this
new CQM feature.

An input to a JSS problem consists of a list of jobs to
be performed; there are five jobs (gold, orange, green,
blue, teal). Each job is divided into a sequence of tasks
(colored blocks numbered 0, 1, 2, 3, 4), of varying du-
rations (indicated by block widths). Each task is per-
formed using a specific machine (A, B, C, D, E) in the
shop.

There is one variable per task, and the values assigned
to tasks are their start times. The optimization problem
is to assign a time to each task so as to minimize the
total makespan – the time between the start of the first
task and the finish of the last task — while obeying two
constraints:

1. Within a job, each task i must finish before its suc-
cessor task i + 1 can begin. In Figure 3, it is easy to
verify that orange tasks obey this constraint, as do
the tasks of other colors.

2. A machine can perform only one task at a time:
in the figure, it is easy to see that no machine is
assigned tasks that overlap in time.

As with MAXCUT, variations on JSS may be found in
many real-world applications, for example:

• Equipment maintenance scheduling. The jobs
correspond to corporate assets (trucks, helicopters,
generators), each scheduled to undergo a series
of maintenance operations. The machines corre-
spond to separate facilities containing specialized
equipment for these operations. An optimal solu-
tion schedules all task times so as to minimize total
maintenance time.

Copyright © D-Wave Systems Inc. Hybrid Quadratic Solvers 4



0 2 4 6 8 10 12 14 16
E
D
C
B
A

0

0

0
0

0

1

1

1
1

1

2

2

2

2
2

3
3

3
3

3
4

4

4

4
4

makespan with reals = 14.71

Start Times

0 2 4 6 8 10 12 14 16
E
D
C
B
A

0

0

0
0

0

1

1

1
1

1

2

2

2

2
2

3
3

3
3

3
4

4

4

4
4

makespan with integers = 17

Figure 3: Top: A solution to a JSS problem defined on real variables. Bottom: A solution to the same problem, with real variables
replaced by integer variables. Makespan has increased 15 percent.

• Work crew scheduling. The “jobs” are construc-
tion sites, each consisting of certain tasks (HVAC,
plumbing, flooring, paint, etc.) to be performed, in
a specified order. The “machines” are specialized
work crews that travel from site to site (one site
per day) to perform the tasks. The optimal sched-
ule assigns days to work crews, to minimize the
time to complete construction at all sites.

• Airport scheduling. Arrival of an aircraft at an air-
port consists of a sequence of steps requiring ex-
clusive use of certain airport resources: approach
on path A, land on runway B, taxi across runway
intersections C, D, and so forth. The jobs are the
aircraft, the tasks are the arrival steps, and the ma-
chines are the airport resources and/ or ground
crew members necessary to each step. An optimal
schedule assigns times to each step to minimize the
total time required for all incoming flights to arrive
at their gates.

The top panel of Figure 3 shows a solution to a JSS prob-
lem defined on real variables (top), and shows a solu-
tion to the same problem defined on integers (bottom).

In the top version, a task can start immediately after
its predecessor ends. In the bottom version, time is di-
vided into discrete intervals, say one hour each (shown
on the bottom), and tasks are assigned to the start of
each interval. A comparison of the top and bottom so-
lutions shows that requiring each task to start at the top
of the hour creates wasted time whenever a task fin-
ishes early. In this example, the use of integers instead
of reals increases makespan by about 16 percent, from
14.71 to 17.

As a general rule, problems that are naturally defined
in terms of real values are best solved using continu-
ous models. At the time of this writing, the CQM solver
supports a broader set of integer constraints than real
constraints; formulation as an integer model may be
the only available option at present. However, devel-
opment of the CQM solver progresses rapidly and the
variety of supported constraint types is expected to in-
crease in future versions.

The toy problems described in this section are intended
to illustrate the progressively more powerful modeling
capabilities of the DQM and CQM solvers compared to
the original BQM solver. However, the HSS is not de-

Copyright © D-Wave Systems Inc. Hybrid Quadratic Solvers 5



BQM DQM CQM
Objective Function linear & linear & linear &

quadratic quadratic quadratic
Variable Type binary discrete binary, integer, real

Max Values per Variable 2 65,000 2, ±253 [1]
Constraint via penalties case restriction [2] variable bounds

Representation via penalties integer linear & quadratic equality
integer linear & quadratic inequality

real linear equality & inequality
via penalties

Max Variables [3] 1 million 5,000 500,000
Max Constraints – – 100,000
Max Biases [4] 200 million 5 billion 2 billion

Table 1: Solvers in the HSS portfolio provide support for ever-broader categories of problems. Notes: [1] Variables are repre-
sented as dimod.BINARY, dimod.INTEGER, and dimod.REAL types. [2] The BQM solver uses case restriction for constraints involv-
ing forbidden combinations of values assigned to variables or pairs of variables. [3] In BQM and CQM solvers, the maximum
number of variables is also limited by the maximum number of biases; see the documentation for details. [4] For BQM and CQM
solvers the number of biases is the number of nonzero weights on all nodes and edges of the input graph; for DQM this is the
number of all nonzero weights on all cases assigned to nodes and edges.

signed to solve toy problems, but rather to tackle con-
strained quadratic optimization problems of industri-
ally relevant complexity and size. Table 1 summarizes
the features, problem types, and inputs supported by
each solver.

3 Performance Comparison
In addition to ease-of-use and modeling power, the per-
formance of CQM in comparison to its companions
BQM and DQM is also of interest: which is the best
choice for tackling the job at hand?

An apples-to-apples performance comparison requires
problems that can be translated to run on all three
solvers. As a general rule, translating “downstream”
from BQM to DQM to CQM is straightforward, since
their variable domains are increasingly general. How-
ever, reformulating problems “upstream” from CQM to
DQM to BQM can sometimes be prohibitively compli-
cated.

We have selected three problems that are simple
enough to allow easy translation both upstream and
downstream: for this reason the selected problems do
not fully exercise the expressive power of the CQM
solver.

Each problem in our test set is most naturally repre-
sented by one specific HSS solver as follows:

• The BQM problem set comprises 15 inputs from
the MQLib problem repository of MAXCUT and
QUBO inputs [6]. These unconstrained binary in-
puts represent a variety of application domains
and contain N ∈ [1200 . . . 2500] variables.

• The DQM problem set consists of 15 inputs from
the DIMACS Graph Coloring problem repository
[7]. The graph coloring problem is to assign colors
to nodes of a graph, so that no two edge endpoints
have the same color, in a way that minimizes the
total number of different colors used. These inputs
come from a variety of applications and have sizes
N ∈ [74 . . . 561].

• CQM problems consist of 15 randomly generated
inputs for the traveling salesperson problem (TSP).
The TSP problem is to assign a “visit index” (first,
second, etc.) to nodes in a graph, to minimize the
total weight of edges between successively vis-
ited nodes, under the constraints that each node
is visited exactly once and that each index is as-
signed exactly once. These inputs have sizes N ∈
[35 . . . 63], and uniform edge weights in [1, 2N].

As a side note, these problems illustrate a general prop-

Copyright © D-Wave Systems Inc. Hybrid Quadratic Solvers 6



BQM
(MQLib)

DQM
(Graph Coloring)

 CQM
(TSP)

010 8

10 6

10 4

10 2

100
Re

la
tiv

e 
Er

ro
r

BQM Solver
DQM Solver
CQM Solver

Figure 4: Performance of BQM vs DQM vs CQM on three problem sets. MQLib problems are naturally expressed as BQMs;
graph coloring problems are naturally expressed as DQMs; and TSP problems are naturally expressed as CQMs.

erty: increasing the variable complexity from binary to
discrete to integer in a formulation tends to decrease
the number of variables needed to represent the prob-
lem. In this case, TSP inputs must be kept small enough
to ensure that their binary representation fits within the
BQM size limits shown in Table 1.

As currently deployed, the BQM solver always returns
a single solution, while the DQM and CQM solvers
may return multiple solutions, depending on input
properties and internal configurations. In these tests we
record the best-quality solution returned with a five-
minute time limit.

For each input: let Sbest be the best quality score found
among all solvers; let Sworst be the worst score over all;
and let S denote the best score found by a given solver
on this input. The error distance ∆(x, y) denotes the
positive difference between two scores, accounting for
possible sign differences. The relative error is the scaled
error distance, R = ∆(Sbest, S)/∆(Sbest, Sworst).

Figure 4 shows the results. The y-axis marks relative er-
rors for each input set (lower is better), and the x-axis
shows results for three solvers in each of three input
categories. Each boxplot summarizes the distribution
of 15 measurements of relative error, one for each in-
put. The area between box endpoints corresponds to
the middle 50 percent of the distribution, horizontal
lines within the boxes are medians, and lines and indi-
vidual points outside the boxes show the distribution
tails and outliers. Here are some observations.

• MQLib. The three left boxes compare solver per-
formance on MQLib inputs, which are most nat-
urally expressed as BQMs. Not surprisingly the
BQM solver (blue) performs best, with median
R = 0, meaning BQM found best solutions on over
half its inputs. The DQM (orange) and CQM (teal)
solvers are able to match this performance in some
cases, with CQM outperforming DQM in terms of
worst-case performance.

• Graph Coloring. The three center boxes compare
performance on graph coloring problems which
are naturally expressed as DQMs. On these prob-
lems the BQM solver shows worst performance of
the three. The DQM solver is able to find good
results in some problems, but the more recent
CQM solver performs best overall. This outcome
reflects an ongoing effort by CQM developers to
detect DQM structures and apply newly devel-
oped strategies not available in DQM. We expect
that CQM will eventually replace the DQM solver
in HSS.

• TSP. The three rightmost bars compare solver per-
formance on TSP inputs. We see significant per-
formance improvements from the CQM solver. Al-
though all three solvers were able to find feasible
solutions to these problems, the ability to directly
represent constraints means that the CQM solver
does a better job of avoiding time-consuming ex-
ploration of the infeasible problem space.

Copyright © D-Wave Systems Inc. Hybrid Quadratic Solvers 7



����
user

-�

BQM
DQM
CQM

Solution

solver
�
�
�
��

-

@
@
@
@R

�
�

�
�	
�

@
@

@
@I

heuristic

heuristic

heuristic

QM

QM

QM

@
@
@
@R
-

�
�
�
��

@
@

@
@I

�

�
�

�
�	

QPU

Figure 5: Structure of a hybrid solver in HSS. The front end (blue) reads an input Q and optionally a time limit T. It invokes
some number of heuristic solvers (threads) that run on classical CPUs and GPUs (teal) and search for good-quality solutions
to Q. Each heuristic solver contains a quantum module (QM) that formulates and sends quantum queries to a D-Wave QPU
(orange); QPU responses to these queries may be used to guide the heuristic search or to improve the quality of a current pool
of solutions. Before time limit T, the heuristic solvers send their results to the portfolio front end, which, for example, removes
duplicates and forwards a subset of solutions to the user.

This test shows the importance of choosing the right
solver for the task at hand. The BQM solver shows the
best performance on unconstrained binary problems,
while DQM and CQM outperform it on discrete and
integer problems. CQM outperforms DQM on the dis-
crete problems tested here, and is expected eventually
to outperform DQM on all discrete problems. The CQM
solver is the best choice for representing and solving
constrained optimization problems.

4 Hybrid Work�ows
Every solver in the HSS portfolio incorporates a hy-
brid quantum-classical workflow, as shown in Figure 5.
Each solver has a classical front end that reads an input
Q and (optionally) a time limit T.3 It then invokes one
or more hybrid heuristic solvers (computation threads)
to search for good-quality solutions to Q.

The heuristic solvers run in parallel on state-of-the-art
CPU and/or GPU platforms provided by Amazon Web
Services4 (AWS). Each contains a classical heuristic mod-

3If none is provided by the user, a default time that depends on
input size is used.

4Amazon Web Services is a trademark of Amazon Technologies,
Inc.

ule that explores the solution space, and a quantum mod-
ule (QM), which formulates quantum queries that are
sent to a back-end Advantage QPU. Replies from the
QPU are used to guide the heuristic module toward
more promising areas of the search space, or to find im-
provements to existing solutions. Each heuristic sends
its best solutions to the front end before the time limit is
reached, and the front end forwards best results to the
user.

Accelerating Convergence to Better-Quality Solutions
This arrangement of classical and quantum solvers
working in tandem makes possible a phenomenon il-
lustrated in Figure 6, from tests using the CQM solver.

Internal versions of HSS solvers5 can operate in two
modes, called workflows: in the hybrid workflow (or-
ange) the QM module is active; in the heuristic work-
flow (blue) the QM module is disabled and the classi-

5These tests were carried out using a “laboratory” version of the
CQM solver, which runs single-threaded on a single platform. In con-
trast, the HSS production solvers available to the public are deployed
for multi-threaded use in the cloud. For reasons of efficiency they do
not offer the heuristic workflow option to users; in addition, accurate
runtime control and reporting is problematic. For these reasons, the
results of this section may differ somewhat from those observed in
deployed systems, though we expect that latter to be generally more
efficient.

Copyright © D-Wave Systems Inc. Hybrid Quadratic Solvers 8



Figure 6: Hybrid workflows sampled at different time limits
T can exhibit hybrid acceleration, converging to better solutions
faster than purely classical workflows.

cal heuristic works alone. Note that for reasons of effi-
ciency, the heuristic workflow option is not available in
HSS solvers that are deployed for public use.

The three panels correspond to three individual inputs.
The y-axis corresponds to relative errors observed, at
time limits T between 3 seconds and 3000 seconds (50
minutes), marked on the x-axis. The boxplots summa-
rize sampled relative errors over 75 independent trials
for each workflow and each time limit. Note that the
hybrid workflow converges more quickly to better re-
sults, returning better solutions at some time limits. We
call this phenomenon hybrid acceleration.

The nature of hybrid acceleration varies from input
to input. For example the top panel shows small but
steady differences in solution quality over the range of
sampled times, while the bottom panel shows signifi-
cant acceleration around T = 30 seconds, that disap-
pears by T = 300 seconds. As a general rule, hybrid ac-
celeration cannot be observed at higher T, when both
workflows have had enough time to converge to the
same (presumably optimal) solutions.

Like its companions in the HSS, the CQM solver is de-
signed in such a way that the QPU always has a chance
to accelerate convergence in this way. This does not
necessarily mean that acceleration always occurs: some
inputs are easy enough to be solved heuristically with-
out needing a quantum boost, and some inputs may
have complex structures that resist acceleration.

5 Remarks
This report introduces a new CQM solver for con-
strained quadratic models to D-Wave’s hybrid solver
portfolio. The CQM solver can model problems defined
on integer variables, and offers an easy-to-use inter-
face that supports direct representation of problem con-
straints. These capabilities bring a much larger region
of the constrained optimization problem space within
scope of the HSS.

Because CQM is able to represent constraints explicitly,
it tends to be more efficient than its companions at find-
ing good-quality feasible solutions to constrained prob-
lems. However, unconstrained binary problems can be
more efficiently solved by the BQM solver.

Like its companions in HSS, the CQM solver incor-

Copyright © D-Wave Systems Inc. Hybrid Quadratic Solvers 9



porates queries to an Advantage quantum processor
working as a back-end query processor. This combina-
tion of classical and quantum solution methods work-
ing in tandem can exhibit a phenomenon known as hy-
brid acceleration, whereby the hybrid workflow can find
better solutions faster than a purely classical workflow.

References
[1] Visit cloud.dwavesys.com/leap.

[2] Visit docs.ocean.dwavesys.com. Search terms: Using
Leap’s Hybrid Solvers.

[3] Visit docs.ocean.dwavesys.com. Search terms: Ocean
Software: Ocean documentation: dwave-hybrid.

[4] Visit dwavesys.com/learn/featured-applications.

[5] Visit docs.ocean.dwavesys.com. Search terms: struc-
tural imbalance.

[6] Dunning et al., What works best when? A
systematic evaluation of heuristics for Max-Cut
and QUBO, Informs Journal on Computing, 15
Oct. 2018. Inputs may be downloaded from
github.com/MQLib/MQLib.

[7] D. S. Johnson and M. A. Trick, Cliques,
Coloring, and Satisfiability: Second DI-
MACS Implementation Challenge, Oct. 11,
1993. Inputs may be downloaded from
mat.tepper.cmu.edu/COLOR/instances.html.

Copyright © D-Wave Systems Inc. Hybrid Quadratic Solvers 10


	Introduction
	Quadratic Models for Real-World Problems
	Performance Comparison
	Hybrid Workflows
	Remarks

